A Prosperous Marriage?
Targeted Program Design for Community Solar + DR

Jill K. Cliburn, CSVP Program Manager
BECC • Sacramento, CA • October 2015
Speed Talk: 1) In order to reach the market penetration that climate preservation demands, we need “solar-plus” integration strategies 2) We can start with willing community solar-plus participants 3) …So let’s find them!

From gardens…
To grid resources
CSVP: Driving Net Solar Cost Reduction

Strategic solar design/specifications

Best-practice project financing/procurement

Utility-driven target market development & a more customized offer

DR and storage companion measures increase net solar value
Shape of the Challenge
In Different Time Domains

Source: CAISO 2014

Tucson PV Plant Performance
EnergyStorage.org
Solar + Demand Response
Community Solar Plus DR… Why??

- According to The Shelton Group (SEPA, 2015) >60% of residential utility customers want a solar option; in focus groups, they prefer community solar to rooftop solar.
- Matching CS with companion measures (DR, storage) offers customers a chance to be sure their solar counts.
- Bundling services cuts costs, adds convenience, and promotes utility customer-retention.
- DR may be designed to address seasonal peaks, daily peaks and steep load-ramping, daily forecasted solar variability, or variability in even shorter timeframes.
- Utilities are starting to see that DR often makes more sense than batteries, and DR + batteries may be a high-value combination.
Rule of Thumb: Simpler is Better

Indications that DR of any kind is little-understood; less than half of customers nationwide (SGCC*, 2015) have heard of smart grid, an overarching concept for DR

Even within utilities, DR for renewables integration is new and requires some program changes

A community solar-plus program implies that the utility is going to engage with customers in a conversation about what a 21st Century utility needs to look like

*The Smart Grid Consumer Collaborative
Putting the Question to the Subset That Is More Aware…
Matrix One
10 DR Measures

<table>
<thead>
<tr>
<th>DR Option</th>
<th>Enablement Cost</th>
<th>Incentive Cost</th>
<th>Avg. Load Impact per Unit</th>
<th>Impacts by Seasonal Availability</th>
<th>Impacts by Weather Condition</th>
<th>Events Feasible per season</th>
<th>Max event hours per season</th>
<th>Respons time to signal</th>
<th>Duration of Impact</th>
<th>Re-charging, necessary?</th>
<th>Resource Magnitude Per Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Curtailable Load (Day-ahead)</td>
<td>Low-Medium $25/kW-yr or less</td>
<td>$10-$30/kW-month for capacity (+ energy payments)</td>
<td>Depends on end-use</td>
<td>Limited to summer season</td>
<td>Limited to summer season</td>
<td>Frequentl y limited to less than 50</td>
<td>100</td>
<td>20-26 Hours</td>
<td>2-6 Hours</td>
<td>Yes; usually limited to one event per day</td>
</tr>
<tr>
<td>2</td>
<td>Curtailable Load (Day-of)</td>
<td>Low-Medium $25/kW-yr or less</td>
<td>$15-$35/kW-month for capacity +energy payments</td>
<td>Depends on end-use</td>
<td>Limited to summer season</td>
<td>Limited to summer season</td>
<td>Frequentl y limited to less than 50</td>
<td>100</td>
<td>20-26 Hours</td>
<td>2-6 Hours</td>
<td>Yes; usually limited to one event per day</td>
</tr>
<tr>
<td>3</td>
<td>Auto-DR</td>
<td>$10-282$/kW</td>
<td>$200-$400/kW load reduction</td>
<td>$15-$35/kW-month for capacity +energy payments</td>
<td>Limited to summer season</td>
<td>Limited to summer season</td>
<td>Frequentl y limited to less than 50</td>
<td>100</td>
<td>20-26 Hours</td>
<td>2-6 Hours</td>
<td>Yes; usually limited to one event per day</td>
</tr>
<tr>
<td>4</td>
<td>Direct Load Control (A/C switch control)</td>
<td>$70-$150/switch</td>
<td>$55/kW/yr</td>
<td>One-time payment (~$100)</td>
<td>0.37 kW (27% cycling); 0.80 kW (50% cycling)</td>
<td>Warm months only</td>
<td>0.37 kW (27% cycling); 0.80 kW (50% cycling)</td>
<td>Warm months only</td>
<td>0.37 kW (27% cycling); 0.80 kW (50% cycling)</td>
<td>Warm months only</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note:
- Curtailable Load (Day-ahead) pays on a per KW basis.
- Curtailable Load (Day-of) pays on a per KW/month basis.
- Auto-DR pays on a per KW basis.
- Direct Load Control (A/C switch control) pays on a per KW/month basis.
- Resource Magnitude Per Location: Large, Medium, Small.
CVSP Balanced Program-Design Process

Program Design

Market-Driven Elements:
Competitive Offer

Utility-Driven Elements:
Strategic Value

Strategic Value Analysis
The Market-Driven Side of the Equation

- Market Information (Target Segmentation)
- Draft Offer
- Competitive Test
- Delivery Approach
- Customer Engagement
“It's really hard to design products by focus groups. A lot of times, people don't know what they want until you show it to them.”

— Steve Jobs
SMUD Takes a New Approach

- Identify Prizm segments based on customer attributes
- Sketch offers based on targeted-sector headline attributes, e.g., preferred technology, financing, level of engagement
- Rank, based on market potential and benefits of each offer
- Complete the draft offer to suit the targeted sector/s, including site location, bundled services, pricing/terms, messaging, and outreach based on the sector’s values and preferences

Sours: Shah, 2015
All Segments Are Not Alike

• SMUD-specific research indicated that overall … community solar is a top “star” idea; remote utility management of customer equipment is the opposite—yielding a strong negative response

• Previous studies concurred that there were 2 drivers for community solar: that it is the right thing to do, and that participating could save money… but not all segments favored both equally

• *Particular* target segments thought differently, and some segments thought DR could be reframed in a positive way

• A few segments are favorable toward DR when they have some control, including (but not exclusively) via mobile device

• Results from evaluations of SMUD’s PowerStat AC load-control program confirmed how effective communications can turn wary preconceptions about DR into strong support
Not Done Yet!

- Also consult available Utility CIS, county-data, JD Power survey, additional studies (e.g., BrandDelphi), past program evaluations
- Zero in with survey or focus group questions specific to your offer, your target sectors
- Include a Competitive Test against other offers or alternative actions
By Using Segmentation, Outreach/Engagement is Simplified, Too
Imagine Growing Fleets of Community Solar-Plus Projects, Leading to Widespread Use of DR + Storage Integration Strategies

88% of utility execs ranked distributed energy resources as their greatest opportunity, but 63% weren’t sure how to build a good business around it*

* Utility Dive, 2014 Annual Survey
The Community Solar Value Project is focused on improving community-solar program value, through solar + storage + demand-response and other strategies, at electric utilities in Sacramento and beyond. It is led by Extensible Energy, LLC, and draws on expertise from three energy consulting firms. See www.communitysolarvalueproject.com

Jill K. Cliburn is Program Manager of the CSVP. She brings long experience in the utility industry, including work in solar and wind market development, solar program and policy consulting, utility integrated resource planning, and DSM and load management program design. Contact: jkcliburn@cliburnenergy.com.
Acknowledgements and Disclaimers

This presentation from the Community Solar Value Project constitutes information, data, or work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, an agency of the United States Government, under Award Number DE-EE0006905. All copyright rights are reserved by the Community Solar Value Project, the copyright owner.

This work contains findings that are general in nature. Readers are reminded to perform due diligence in applying these findings to their specific needs, as it is not possible for the authors to have sufficient understanding of any specific situation to ensure applicability of the findings in all cases. Neither the authors nor the Community Solar Value Project (CSVP) assume liability for how readers may use, interpret, or apply the information, analysis, templates, and guidance herein or with respect to the use of, or damages resulting from the use of, any information, apparatus, method, or process contained herein. In addition, the authors and CSVP make no warranty or representation that the use of these contents does not infringe on privately held rights.

Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
What It Looks Like: Strawman Model

Competitive Product with Voluntary Companion Measures

- Participants’ rate based on wholesale solar cost + admin + wires costs
- Keyed to solar capacity “share”
- Plus payments for adding integration value via DR / storage

Solar Project/s with Strategic Design

- Utility pays price set by competitive PPA; specifying design; likely buyout
- Siting/design for value-added wholesale solar
- Fleet expansion expected, with technical and pricing adjustments

*CSVP model; generic to the SMUD proposal